Distance from Bloch-Type Functions to the Analytic SpaceF(p,q,s)
نویسندگان
چکیده
منابع مشابه
The analytic structure of Bloch functions for linear molecular chains
This paper deals with Hamiltonians of the form H = −∇ + v(r), with v(r) periodic along the z direction, v(x, y, z + b) = v(x, y, z). The wavefunctions of H are the well known Bloch functions ψn,λ(r), with the fundamental property ψn,λ(x, y, z + b) = λψn,λ(x, y, z) and ∂zψn,λ(x, y, z + b) = λ∂zψn,λ(x, y, z). We give the generic analytic structure (i.e. the Riemann surface) of ψn,λ(r) and their c...
متن کاملGeneralized Weighted Composition Operators From Logarithmic Bloch Type Spaces to $ n $'th Weighted Type Spaces
Let $ mathcal{H}(mathbb{D}) $ denote the space of analytic functions on the open unit disc $mathbb{D}$. For a weight $mu$ and a nonnegative integer $n$, the $n$'th weighted type space $ mathcal{W}_mu ^{(n)} $ is the space of all $fin mathcal{H}(mathbb{D}) $ such that $sup_{zin mathbb{D}}mu(z)left|f^{(n)}(z)right|begin{align*}left|f right|_{mathcal{W}_...
متن کاملGeneralized composition operators from logarithmic Bloch type spaces to Q_K type spaces
In this paper boundedness and compactness of generalized composition oper-ators from logarithmic Bloch type spaces to Q_K type spaces are investigated.
متن کاملDeriving Cluster Analytic Distance Functions from Gaussian Mixture Models
The reliable detection of clusters in datasets of non-trivial dimensionality is notoriously difficult. Clustering algorithms are generally driven by some distance function (usually Euclidean) defined over pairs of examples, which implicitly treats distances within and between clusters alike. In this paper, a more effective distance measure is proposed, derived from an a priori estimated Gaussia...
متن کاملOn Bloch-Type Functions with Hadamard Gaps
We give some sufficient and necessary conditions for an analytic function f on the unit ball B with Hadamard gaps, that is, for f (z)=∑k=1Pnk (z) (the homogeneous polynomial expansion of f ) satisfying nk+1/nk ≥ λ > 1 for all k ∈N, to belong to the space p(B)= { f |sup0<r<1(1− r2)‖R fr‖p <∞, f ∈H(B)}, p = 1,2,∞ as well as to the corresponding little space. A remark on analytic functions with Ha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Abstract and Applied Analysis
سال: 2014
ISSN: 1085-3375,1687-0409
DOI: 10.1155/2014/610237